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Phase transitions of some fully frustrated models 
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Abstract. Fully frustrated antiferromagnets with triangular plaquettes are investigated. 
For the two-dimensional triangular lattice, the king antiferromagnet is in the class of the 
XY model with transition temperature T = 0. For d 2 3 we investigate the face-centred 
cubic lattice. For even d there is a proper phase transition with long-range order. For odd d 
the fluctuation spectrum has a reduced dimensionality ( d -  1). This is reflected in an infinite 
ground state degeneracy and a reduced dimensionality of the ground state order (d - n). 
Ford = 3 a phase transition occurs for the king model but not for n 3 3. The relationship of 
the fully frustrated phase to the disordered spin glass is also discussed. It is suggested that 
the two phases might be distinct near d = 6 but coalesce at some lower dimensionality. 

1. Introduction 

The purpose of this paper is to study the phase diagram of several fully frustrated (FF) 
spin models. It is thus closely related to the work of Villain (1977) on the FF square and 
diamond lattices. Our approach differs in two respects. (i) We investigate lattices for 
which the elementary nearest-neighbour (NN) plaquettes are triangles, namely the 
two-dimensional triangular lattice and the face-centred cubic (FCC) lattice in d dimen- 
sions (d 2 3). On such lattices the antiferromagnet is fully frustrated. This considerably 
simplifies the analysis because the symmetry of the underlying Bravais lattice is not 
broken by the introduction of frustration. For Edwards-Anderson (EA, Edwards and 
Anderson 1975) spin glass (SG) models with distributions of positive and negative NN 
spin coupling constants, one also passes continuously from ferromagnetic to FF models 
as the average coupling constant (U)) is changed. The FF models on these lattices are 
thus simply related to SG models. When the elementary plaquettes are square, the 
maximum E A  model frustration is 50°/0, so that the relationship is not obvious. (ii) We 
also use the Landau expansion of the free energy to obtain information on the 
universality class and effective dimensionality of the FF phases and phase transitions. 

The motivation for this investigation is largely the hope that a better understanding 
of FF systems may help in understanding spin glasses, and in particular the role of 
frustration in SG transitions (Toulouse 1977). The FF models seem to display all the 
essential ground state properties investigated by Kirckpatrick (1978) and by Vanni- 
menus and Toulouse (1978). This raises the question of the existence of a separate, 
randomly frustrated SG phase, distinct from the FF phase, and of the properties of the 
relevant phase boundary. Mean field calculations suggest (T Lubensky 1978, private 
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of Physics, University of Pennsylvania, and at the Brown Boveri Research Center. 
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communication) that there are indeed two separate phases. It is, however, not obvious 
how reliable this is for the low dimensionalities of physical interest. 

In § 2 we discuss the antiferromagnet on the two-dimensional triangular lattice. The 
Ising model free energy was calculated exactly by Wannier (1950). We show that this 
model belongs in the universality class of the planar (XY) model with a sixfold 
symmetry-breaking term. The ground state degeneracy arises from peculiarities of the 
constraints on the magnitude of the spins, which also suppress the transition to T = 0. 
The degeneracy disappears for planar or Heisenberg spins. Villain’s results on the FF 
square lattice may be understood in the same way. 

In § 3 we discuss the FCC lattice for integral dimensionalities d 2 3. For odd d we 
find a reduced effective dimensionality in the free energy expansions (den = d - 1). For 
the Ising model we find an infinite one-dimensional ground state degeneracy ( ~ 2 ~ ’ ’ ~ ) ,  
( d  - 1)-dimensional long-range order (LRO), and no zero-point entropy. In three 
dimensions there seems to be an effectively two-dimensional phase trmsition in the 
class of the two-dimensional Heisenberg model with cubic anisotropies. 

For n-component spins with n 2 d there is a finite ground state entropy and no phase 
transition for d s 3. The ( n  = 2) XY model is marginal. The ground state has one- 
dimensional order but also no entropy (degeneracy s h N 2 ’ d ) .  

In 8 4 we discuss the relevance of the FF models to spin glasses. 

2. Two-dimensional models 

We shall mainly be concerned with the two-dimensional antiferromagnet on the 
triangular lattice. We note, however, that the results for the FF square lattice (Villain 
1977) are very similar, and discuss this briefly below. 

Wannier (1950) has calculated the thermodynamic functions and discussed the 
properties of the Ising model ground state in detail. He finds no specific heat singularity 
and a finite large entropy for the ground state. The magnetic susceptibility diverges at 
T = 0. More recently, Schick et a1 (1976, 1977) have studied the phase diagram in 
external fields, mainly because of its relevance to lattice gases. They predict a phase 
transition in any finite field (or at fixed magnetisation). Related calculations at fixed 
magnetisation were recently done by Berker et a1 (1978). 

The Hamiltonian is 

where S, is the Fourier transform of the Si, and 4 is a vector in the hexagonal Brillouin 
zone of this lattice. The minima of 

Jq = J[cos qx + 2 cos(qJ2) cos(J?q,/2)] (2) 

Q = ( * 4 ~ / 3 ;  0).  (3) 

are at the corners of the zone (Alexander 1976) 

The other corners are related to these by reciprocal lattice vectors. The model is 
specified by equation (1) supplemented by the constraints 

s: = 1. (4) 
We first consider the ground state properties. 
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2.1. Ground state properties 

For the Ising model (but not for n 2 2) the constraints (equation (4)) are incompatible 
with the preferred wavevector (Q). This leads to the ground state degeneracy. 

Substituting Q (equation (3)) in equation (2) one finds a minimum energy of -3J /2  
per site. On the other hand, by inspection (Wannier 1950), the lowest energy 
compatible with the constraints (equation (4)) is -J. This is the energy at the saddle 
point ( ~ ( 1 ,  J3/2)) on the zone boundary, where the constraints are automatically 
satisfied. Any configuration 

c+(W = c a,,c+,,, a,, = a-,, 

which satisfies the constraints and for which 
4 

c laPiI2J.?, = 1 
i 

is also a legitimate ground state. This requires that a sufficient fraction of the 
contributing qi should have J,, < -1. There are many ways of doing this. Wannier finds 
a ground state entropy of 

3 rr/6 

S(O) /R = - I 
T o  

ln(2 cos W )  = d o  = 0.338314. (7) 

This essentially fortuitous origin of the Ising model ground state degeneracy 
becomes obvious when one considers vector models with n 2 2. Equation (2) still holds, 
but solutions at Q now exist. These are (for n = 2) the spirals 

( S ,  +is , )  = exp[*i(QR + 4 ) ] .  (8) 
There is thus a continuous degeneracy associated with the phase ( 4 ) ,  as for the XY 

model. In addition there is a discrete twofold degeneracy because the spirals can be 
right- or left-handed. 

Villain (1977) finds exactly analogous results for the FF square lattice. The only real 
difference is that the two degenerate points of J,, (on the square lattice) are not simply 
related by the lattice symmetry. This makes the interpretation somewhat more 
cumbersome. Obviously this reflects the fact that no realisation of the FF square lattice 
has the full space group symmetry. 

We note that the Ising model ground state displays all the properties investigated 
recently by Vannimenus and Toulouse (1978), Kirckpatrick (1978) and Reed et a1 
(1978) for random two-dimensional SG models. We shall show later that the ground 
state degeneracy for three-dimensional models has a completely different origin and 
remains for all n. 

2.2. Landau expansion and thermodynamics 

The structure of the free energy expansion is determined by the energy (equation (2)). 
For simplicity we only write down the expressions for the Ising model. The generalisa- 
tion to n-component vectors is straightforward, but keeping track of the n-component 
vector coupling complicates the notations without adding anything to the argument. We 
define 

(9) 
+ 

7)k .= VQ+ k = 7) - k,  
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where k is confined to a triangle centred at Q. The order parameter is complex: 
+ 

= T O  = aQ = 1 ~ 1  ei', 7 =a-Q. (10) 

The phase 4 relates the spin density wave (17) to the underlying lattice. The free 
energy functional can be written 

@ = @ 2 + @ 4 + @ ' 6 + .  . . * (11) 
The structure of @z is given by Jp' The leading order (in k )  we write 

Q2 = dk (r + k 2 ) ( v k q I k ) .  I 
For small k the only contribution to O4 is 

which does not depend on the phase 4. Other terms can occur when 

The most important is 

where we have used the fact that 

3 Q = K  

is a reciprocal lattice vector. This term becomes important in the presence of a uniform 
magnetic field (H), or for a lattice gas, when a. # 0. It leads to a cos 34) three-state 
Potts-model-like dependence on 4 (Alexander 1976). 

In Q6 there are also independent contributions analogous to Q4 (equation (13)) with 
products of three Y)ki and three v i i .  More important is the fact that the rotational 
symmetry in 6, is broken: 

When there are no external fields, this is the first symmetry-breaking term. It implies a 
cos64 symmetry-breaking term. 

One thus has a model in the universality class of the XY(n = 2) model with a sixfold 
symmetry-breaking term. From the results of JosC et a1 (1977) one would thus expect 
two phase transitions: an XY-like transition at Txy; and, since cos64 is irrelevant at 
Txy, a locking transition at some lower temperature. This does not seem to agree with 
the thermodynamic results of Wannier (1950), which show no singularities. Additional 
information can be obtained from the magnetic susceptibility, which is finite at all finite 
temperatures, but diverges at T = 0. As pointed out above (equation (15)), a uniform 
magnetic field induces a cos34 symmetry-breaking term. (Note that this is not the field 
conjugate to the order parameter 77.) Moreover, such a term would be relevant at Txy 
(JosC et a1 1977), which implies an infinite susceptibility at and below Txy. Thus 
Txy> 0 is certainly excluded. On the other hand, Shick et a1 (1976, 1977) find a finite 
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transition temperature for all finite fields. This, together with the susceptibility 
divergence, strongly suggests Txy = 0. 

The FF and NN model is also a special point on the phase diagram in another way. 
The transition occurs at a finite temperature as soon as next-nearest-neighbour (NNN) 

interactions are added (see e.g. Schick et a1 1977, Mihura and Landau 1977). One 
notes that this only shows up in @ by a quantitative change in Jq(a2). 

It is interesting to generalise to n-component spins. We have seen in P 2.1 that the 
ground state degeneracy disappears. For n = 2 the order parameter has a free phase 
(equation (8)) and an additional twofold (right-left) degeneracy. This would give an 
(n ,  m )  type of order parameter (see e.g. Aharoni 1976) with n = m = 2. Since the two 
types of spirals are coupled by the constraints, there should be hypercubic couplings in 
one (say the m )  spin substance. Villian (1977) finds the same structure on the square 
lattice. While such models have been studied (Domany and Riedel 1978), it is not even 
clear if a phase transition is predicted. For n 2 3 there is certainly no transition. 

3. Antiferromagnetic face-centred cubic lattices 

We define a d-dimensional FCC lattice for d 2 2 by straightforward generalisation from 
three dimensions. The lattice sites are given by 

R ( n l )  = la(n1, n2 . . . n d ) ,  n, = 2m, (18)  

where the ni and m are (positive or negative) integers. The NN separations are given by 
vectors of the type 

(19)  1 1  2 1 rnn/= = ( *3 ;  *Z,OO . . . O ) ,  r d a 2  = 3. 

Thus each site has 

Vd = 2 d ( d - 1 )  

nearest neighbours, and each of these has 4(d  - 2) nearest neighbours in the original NN 

shell. Altogether there are 

/-f,d = 4 d ( d -  l ) ( d - 2 )  (21)  

elementary triangular NN plaquettes associated with each lattice point. 
The reciprocal lattice is body-centred cubic and is generated by the vectors 

K = 2Ko(li . . . I d ) ,  Kb= Ko(1, 1 . . . l ) ,  (22)  

where the li are integers and 

K O  = 2.rr/a. (23)  

We consider the NN antiferromagnet on this lattice. All elementary plaquettes are 
frustrated. For the Ising model the ground state energy cannot be lower than -J/3 per 
bond. This assumes that all elementary plaquettes are in their minimum-energy 
configurations. This gives a lower bound 

U / J >  -d(d - 1 ) / 3  (24)  

for the ground state energy per site. 
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It is easy to see that 
d 

0 <P 
Jq = -25 cos(q,a/2) cos(qpa/2). 

There is always a ferromagnetic minimum at the origin, 

Jo/J = -d(d - 1). (26 )  

We are interested in the maximum of Jq (for positive J ) .  For odd d the maximum is 
degenerate and occurs on lines on the surface of the Brillouin zone. On these lines one 
has 

(27 )  
This degeneracy is well known in NN tight-binding or lattice dynamics calculations. In 
three dimensions it occurs on the line 

4 =KO(% 1, z ) ,  (28 )  
and on the lines obtained by permutations of the coordinates. These lines form crosses 
on the square faces of the Brillouin zone. For general odd d a representative line is 

J,/J = d - 1. 

There are in general, by symmetry, 

(30) 

independent lines of this type. 
For even d the maximum occurs at discrete points on the zone boundary of the type 

l i = O ,  1 ~ i i d / 2  
l i = l ,  d / 2 + 1 ~ i ~ d ,  

Q =KO(/, . * * I d ) ,  

and there are 

n d = ' 2  e Y d )  d / 2  

points of this type. At these points 

J,/ J = d. 

(31 )  

(32 )  

(33) 

3.1. Ground state properties 

Consider first the situation for d even. The spin density waves 

CTQ(R~) COS(QR~) (34)  

have amplitudes *l  at all lattice sites, where Ri is given by equation (18) and Q by 
equation (31). They are thus compatible with the constraints (equation (4)). For the 
Ising model there are no other minimum-energy solutions, and the ground state 
degeneracy is therefore 2n: (equation (32)) .  For n 3 2  the continuous degeneracy is 
added. 
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In all cases the ground state has LRO and the frustrations seem to have no important 
effects. We note that for d = 4 the minimum energy (equation (33)) coincides with the 
frustration estimate (equation (24)). For d > 4 (and even) (d - 1)/3 > 1, and it is no 
longer possible to construct configurations for which all elementary triangles have their 
minimum-energy configuration. 

For odd dimensionality the ground state is infinitely degenerate and has, at most, 
(d - 1)-dimensional LRO. To see this consider a (d - 1)-dimensional lattice orthogonal 
to any of the cubic axes. It constitutes a (d - 1)-dimensional FCC lattice (d - 1) even), 
and one can therefore construct a minimum-energy state of the type (3 1) for the internal 
interactions of these layers. There are 2n"d1 (equation (32)) ways of doing this, and the 
energy per spin is (equation (33)) 

1 V/JI = -(d - 1). (35) 
This is also the minimum energy attainable in d dimensions (equation (27)). Thus 
successive (d - 1)-dimensional layers do not interact. For each cubic axis there are 
(2n : - l )N1 /d  different ways of stacking the spin configurations. 

For the Ising model, configurations with different stacking axes are incompatible, 
and the total ground state degeneracy is 

Thus the ground state is infinitely degenerate but has no finite entropy. All ground state 
configurations have (d - 1)-dimensional LRO. 

For higher spin dimensionality ( n )  the degeneracy is higher. We only set a lower 
limit. The Ising model structures have a constant amplitude at all lattice sites. If one 
chooses one of these configurations, with amplitude U, for each of the n spin 
components U ,  = l ) ,  one always obtains a possible ground state configuration for 
the n-component spin. Thus from equation (36) 

2 

and the ground state entropy must become finite for n zd. Other structures (e.g. 
spirals) are certainly possible, so that equation (37) only sets a lower limit on the 
degeneracy. 

In three dimensions the layers are simply antiferromagnetic square lattices, and it is 
easy to see by inspection that they do not interact. We note that for n < d the ground 
states we have constructed have (d - n)-dimensional LRO. 

We do not know if this alternation between even and odd dimensionalities is a 
general phenomenon or a peculiarity of the FCC lattice we consider. We note that 
Villain (1967) finds the same type of layered degeneracy for the diamond lattice, and 
the results of Kirckpatrick (1977) are also consistent with this structure of the ground 
state. 

We also note that the degeneracy increases smoothly as n increases, and the 
anomalies we encountered for the two-dimensional case do not occur. 

3.2. Phase transitions 

3.2.1. General structure of the continuous models. The order parameter is a spin density 
wave. For even dimensions it has n: components representing the degeneracy of the 



270 S Alexander and P Pincus 

points Q and n spin components. It is thus of the (n ,  n:) type with hypercubic terms 
resulting from the constraints. Thus one predicts a fairly standard type of transition. 
The only effect of the frustration is to change the universality class. 

For odd d the situation is quite different. The order parameter is associated with the 
lines 4 (equation (29)). These form a net on the surface of the Brillouin zone with 
intersections of ( d  + 1)/2 lines at two points on each line. Except for small corrections 
one can therefore regard each line as an independent component of the order 
parameter. Thus one has: 

( a )  The order parameter has three indices-an index ( ~ ( 1  s (Y s n )  for the spin 
component, an index ~ ( 1  s p -s nod) for the line, and a continuous index to describe the 
position along the line. 

( b )  The propagator has an effective dimensionality d - 1. It involves an expansion 
around a line rather than a point. 

(c) The fourth-order terms include hypercubic terms coupling the different lines 
(F ) .  They also have an explicit dependence on the continuous index. 

Thus one has a model with a reduced effective dimensionality (d  - 1) and rather 
complex order parameter and fourth-order terms. In most cases a reduced effective 
dimensionality implies a first-order transition with a crossover to the full dimensionality 
of the ordered state (Brazovski 1975). For the present model the reduced dimen- 
sionality seems to persist to the ground state, so that the crossover may not occur. Each 
of the continuous models one obtains can of course be studied formally for arbitrary 
dimensionality. Explicitly, all have an (upper) critical dimensionality of four (for the 
fluctuation spectrum). Thus for d a 4 the FF FCC models should have mean field-like 
transitions in spite of the infinite degeneracy of the ground state. 

The only really interesting case is d = 3. Since the effective dimensionality is two, 
the behaviour of the model depends in an essential way on the spin dimensionality and 
on the structure of the fourth- and higher-order terms in the free energy functional. 

3.2.2. The three-dimensional Ising model. The order parameter is associated with the 
lines ~ ~ ( 0 ,  1, A )  (equation (28)). It can be seen by expansion of Jq (equation (25)) 
around these lines that the low-energy density of states is indeed constant, and the 
fluctuation spectrum is therefore two-dimensional. On the lines we can define a 
three-component order parameter 

leading to a contribution 

to Oz. Also, as we have seen in discussing the ground state, the three components are 
incompatible in forming ground state structures. One therefore obtains a negative 
cubic anistropy term 
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Thus the FF FCC lattice yields a model closely related to the two-dimensional 
Heisenberg (n  = 3) model with cubic anistropy terms. This model has a phase transition 
at finite temperature. The analogy is, however, not complete. The three-dimensional 
structure of the lattice shows up in the explicit dispersion relations when one moves 
away from the external lines (equation (28)). Thus while the density of states 

P ( E )  = J dq a [ J ( q )  - €1 (41) 

is two-dimensional ( P ( E )  -+ constant), there is no simple way to define the degeneracy 
parameter ( I )  and the twEofOdimensiona1 coordinates away from the degencracy lines. 
The three-dimensional character also shows up in the topology of the defect structure. 
For a fixed disorder axis, changes in the stacking of the ordered planes only require 
two-dimensional ‘Bloch’ lines. Boundaries between regions with different axes almost 
always require discontinuities on surfaces as for three-dimensional cubic magnets. We 
believe that these differences are probably irrelevant and in any case should not inhibit 
the phase transition. The argument is, however, not conclusive, and a more careful 
study is certainly required. 

We have also tried to investigate the thermal stability of the two-dimensional LRO in 
the ground state. In a low-temperature expansion the interaction between spin 
deviations on adjacent planes can be attractive or repulsive with equal probability. The 
result is that correlated pairs of excitations have a larger statistical weight than they 
would have for non-interacting layers. This is the effect of the competing alternative 
structures and will certainly lower the (Ising) transition temperature. Changes in LRO 
are, however, always associated with surfaces or lines of discontinuity. One therefore 
concludes that the order should persist to some finite temperature. 

Analogous arguments for the ( n  = 2) XY model are too vague to be meaningful. It 
seems fairly certain that for n > 3 there is no phase transition. 

4. Conclusions and relation to spin glasses 

Most theoretical discussions of spin glasses are based on the E A  model with a 
distribution of positive and negative spin interactions. They thus have randomly 
distributed frustrated plaquettes, but also gauge disorder (Toulouse 1977) and 
frequently a distribution in the interaction strengths. 

As shown by Toulouse and discussed more recently by Fradkin et a1 (1979), gauge 
disorder is extremely important in interpreting experimental results but does not effect 
the thermodynamics. 

For lattices with triangular plaquettes, the FF model and the ferromagnet occur 
naturally as limiting cases of an EA model. It is therefore natural to assume that there 
are three distinct phases: ferromagnetic for a low concentration of frustration; SG;  and 
finally a distinct FF phase for sufficiently high density of frustration. A mean field 
calculation similar to that of Chen and Lubensky (1977) actually predicts this type of 
phase diagram (T Lubensky 1978, private communication). Also the upper critical 
dimensionality for SG field theories is known to be six (Harris et a1 1976). For the FF 
models it is four for even models and five for odd models. Thus the SG and FF phases 
must be distinct, with a separating phase boundary, near six dimensions. The situation 
is less clear at lower dimensionalities. There is considerable disagreement in the 
literature as to the lower critical dimensionality for spin glasses. It is hard to see 
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physically how the lower critical dimensionality for disordered SG ( d s G )  could be higher 
than that for FF (dLF). This would imply that for dLF < d < dkG a paramagnetic phase 
appears on the phase diagram between the ferromagnet and FF, and an ordering 
transition (from the paramagnetic state) is induced by increasing the concentration of 
frustrations. Our results for dLF are consistent with those of Anderson and Pond (1978) 
for dLG. The phase diagram does, however, also allow a different possibility. The 
ferromagnetic SG phase boundary could merge with the SG-FF boundary below some 
critical dimensionality a;,. The distinct SG phase described by the field theories would 
thus disappear at aiG. On the other hand, a physical SG with random frustration wouid 
show a (FF) transition down to dkF. If this is indeed the case, it might explain the 
contradiction between the results of Fisch and Harris (1977) and those of Anderson and 
Pond (1978). 

An indication that there might be a third critical dimensionality in the problem is 
given by our results on the ground state of the FF FCC lattices. The minimum energy 
attainable is given by equations (27) and (33). This is consistent with a minimum energy 
arrangement on all plaquettes only for one dimensionality (do) .  Below do one presum- 
ably has a ground state degeneracy of the type we saw in two dimensions for the Ising 
model (do = 3 or 4). For d > do the number of unsatisfied bonds is always larger than 
would be nominally required by the plaquettes. At least for Ising spins this is certainly 
an interference effect reflecting the high density of frustrations. Thus it seems that 
models with d > do are somehow different from those with d < d o  and might therefore 
have a different phase diagram. 

Acknowledgments 

The authors would like to thank R Orbach for raising their interest in spin glasses, and R 
Orbach, P Chaikin, I Schuller, T Lubensky, Jastrow and M A Moore for illuminating 
discussions. This work was supported in part by NSF grant DMR75-19544 and ONR 
contract N0014-75-C-0245P3. One of us (SA) would also like to thank the Physics 
Department of the University of Pennsylvania and the Brown Boveri Research Center 
for their hospitality during the final stages of this work. 

References 

Aharoni A 1976 Phase Transitions vol6, ed. C Domb and M Green (New York: Academic) 
Alexander S 1976 Phys. Lett. 23 491 
Anderson P W and Pond C M 1978 Phys. Rev. Lett. 40 903 
Berker A N, Ostwald S and Putnam F A 1978 Phys. Rev. B 17 3650 
Brazovski S A 1975 Sou. Phys.-JETP 41 85 
Chen J H and Lubensky T C 1977 Phys. Rev. B 16 2106 
Domany E and Riedel E K 1978 Phys. Rev. Lett. 40 561 
Edwards S F and Anderson P W 1975 J. Phys. F: Metal Phys. 5 965 
Fisch R and Harris A B 1977 Phys. Rev. Lett. 28 285 
Fradkin E, Huberman B A and Schenker S H 1979 Phys. Rev. B 
Harris A B, Lubensky T C and Chen J H 1976 Phys. Rev. Lett. 36 415 
Jose J V, Kadanoff L P, Kirckpatrick S and Nelson D R 1977 Phys. Rev. B 16 1217 
Kirckpatrick S 1977 Phys. Rev. B 16 4630 
Mihura B and Landau D P 1977 Phys. Rev. Lett. 38 977 
Reed P, Moore M A and Bsay A J 1978 J. Phys. C: Solid St. Phys. 11 L139 



Phase transitions of some fully frustrated models 

Schick M, Walker J S and Wortis M 1976 Phys. Lett. A 58 479 
- 1977 Phys. Rev. B 16 2295 
Toulouse G 1977 Commun. Phys. 2 115 
Wannier G H 1950 Phys. Rev. 78 341 
Vannimenus J and Toulouse G 1977 J. Phys. C: Solid St. Phys. 10 L537 
Villain J 1977 J. Phys. C: SolidSt. Phys. 10 1717 

273 


